skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Datar, M_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To thrive in extreme conditions, organisms have evolved a diverse arsenal of adaptations that confer resilience. These species, their traits, and the mechanisms underlying them comprise a valuable resource that can be mined for numerous conceptual insights and applied objectives. One of the most dramatic adaptations to water limitation is desiccation tolerance. Understanding the mechanisms underlying desiccation tolerance has important potential implications for medicine, biotechnology, agriculture, and conservation. However, progress has been hindered by a lack of standardization across sub-disciplines, complicating the integration of data and slowing the translation of basic discoveries into practical applications. Here, we synthesize current knowledge on desiccation tolerance across evolutionary, ecological, physiological, and cellular scales to provide a roadmap for advancing desiccation tolerance research. We also address critical gaps and technical roadblocks, highlighting the need for standardized experimental practices, improved taxonomic sampling, and the development of new tools for studying biology in a dry state. We hope that this perspective can serve as a roadmap to accelerating research breakthroughs and unlocking the potential of desiccation tolerance to address global challenges related to climate change, food security, and health. 
    more » « less